Visualizing Inference in Bayesian Networks
نویسنده
چکیده
Inference in Bayesian networks is used to calculate the posterior probability distributions of unobserved variables in a network. These posterior probability distributions are used to draw conclusions and are the basis for decisions, in the domain of a particular model. Inference is a complex process and can be difficult to understand for even the most experienced Bayesian network users. In this thesis, we propose a technique to visualize important aspects of a Bayesian network, in order to make the process of inference more insightful. This technique consists of augmenting the visual representation of a Bayesian network with extra information. The only function of arcs in a Bayesian network is to indicate the relationships among the variables. We have used the arcs in a Bayesian network to show additional information: (1) the thickness of an arc is automatically adjusted to represent the strength of influence between two directly connected nodes and (2) the color of an arc is automatically adjusted to indicate the sign of influence between two directly connected nodes. Our technique does this in a novel, dynamic way, which is context-specific and takes into account any indirect influences. We have implemented our technique and integrated it into a software package called GeNIe, which can be used for developing Bayesian networks and is developed at the Decision Systems Laboratory of the University of Pittsburgh. A qualitative empirical evaluation showed that our technique and implementation are easy to use and understand and give a user more insight into a particular Bayesian network.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006